375 resultados para Catalysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-crystalline alpha-Si3N4 nanowires are controlled to grow perpendicular to the wet-etched trenches in the SiO0.94 film on the plane of the Si substrate without metal catalysis. A detailed characterization is carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photoluminescence at 600 nm from alpha-Si3N4 nanowires is attributed to the recombination at the defect state formed by the Si dangling bond N3 equivalent to Si-center dot. The growth mechanism is considered to be related to the catalysis and nitridation of SiO nanoclusters preferably re-deposited around the inner corner of the trenches, as well as faster Si diffusion along the slanting side walls of the trenches. This simple direction-controlled growth method is compatible with the CMOS process, and could facilitate the fabrication of alpha-Si3N4 nanoelectronic or nanophotonic devices on the Si platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct synthesis of alcohols from CO and H2O was investigated using TiO2 catalyst. MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) could be produced under the reaction conditions of T= 573 K, P= 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 to 44 h time-on-stream. Compared with PbO, TiO2 could preserve stable catalytic activity during a long time of reaction. For the same catalyst TiO2, the reaction performance of alkali carbonates increased with their solubility (K2CO3>Na2CO3>Li2CO3). The corresponding catalytic activity was found to increase with the alkalescence of solvent. The formation mechanism of alcohols was proposed as well. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous VSB-5 nickel phosphate molecular sieves with relatively well controllable sizes and morphology of microspheres assembled from nanorods were synthesized at 140 degrees C over a short time in the presence of hexamethylenetetramine (HMT) by a facile hydrothermal method. The pH value, reaction time, and ratio of HMT to NaHPO2-H2O crucially influence the morphology and quality of the final products.